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Abstract-The transverse shear failure of a circular plate with an infinitely large outside radius,
made from a rigid, perfectly plastic material, is considered. The plate has a rigid central cylindrical
boss which is subjected to an initial impulsive velocity which causes a circular transverse shear hinge
to develop at the interface between the boss and the plate. Two models are adopted in this paper.
Rotatory inertia are disregarded in the first, the second retains the influence of rotatory inertia as
well as bending moments. It is illustrated that whether a shear failure occurs or not at the interface,
where the initial velocity has discontinuity, depends on the nondimensional initial kinetic energy,
the material property and two ratios, one is the thickness of the plate to the radius of the boss, and
the second is the density ratio of the boss to the plate. It is shown by the comparison between the
two models that the influence of the rotatory inertia of the plate on the shear failure are not
negligible.
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nondimensional kinetic energy
mass of the boss
thickness of the plate
mH2/12
mass per unit area of the plate
YH2/4, fully plastic bending moment per unit length of the plate
radial and circumferential bending moments per unit length of the plate
YH/j3
transverse shear force per unit length of the plate
radius of the boss
Z/R
s+l
velocity of the plate adjacent to the boss
initial impulsive velocity of the boss
velocity of the boss
transverse deflection of the plate
uniaxial yield stress
position of plastic hinge circle measured from the interface of the plate and boss
Z+R
H/R
transverse shear strain
radial and circumferential curvature
G/nR 2

rotation of the mid-plane due to bending
X 2-X1

%t (.)
%r(·).

I. INTRODUCTION

Problems of dynamic plastic response and failure of thin plates are of considerable theor­
etical and technical importance; Many studies involving failure analysis of beams and plates
show that shear failure is a fundamental mode ofstructural failure under impulsive loading.
Menkes and Opat (1973) observed that transverse shear at the support was one of the three
basic failure modes for impulsively loaded clamped strain-rate-insensitive aluminium alloy
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Fig. I. Schematic illustration of the plate with a cylindrical boss.

beams. Liu and Jones (1987) conducted an experimental investigation into the dynamic
plastic response and failure of strain-rate-sensitive mild-steel beams due to impact loads.
They found that the beams were dominated by shear failures. Jouri and Jones (1988) have
found that the transverse shear severance of beams in double shear loading occurs at a
shear displacement which is much smaller than the beam thickness. Similar to Menkes and
Opat's experiment, Teeling-Smith and Nurick (1991) observed three major failure modes
for impulsively loaded circular plates: excessive permanent transverse deflections (mode I),
tensile tearing failure (mode II) and transverse shear failure (mode III). Shen and Jones
(1993) recently gave an approximate theoretical analysis for the Jynamic plastic response
and failure of a rigid, plastic fully clamped circubr plate subjected to uniformly distributed
transverse impulsive pressure. As with the circular plates, Olson et al. (1993) observed three
similar major failure modes for blast loaded square plates.

The influence of transverse shear and rotatory inertia on the dynamic plastic response
of circular plate has been theoretically examined by Jones and Gomes de Oliveira (1980).
They concluded that transverse shear effects were important for small values of (Q oR/2M0),
while rotatory inertia could further decrease the maximum permanent transverse dis­
placement up to about 14% when (Q oR/2Mo) > 1.5. More recently, Yu and Zhao (1993)
have examined the influence of rotatory inertia of a beam on the dynamic plastic shear
failure of a cantilever with an attached mass block under impulsive loading. The shear
failure occurred at the interface between the block and the beam tip because of the initial
velocity discontinuity. Yu and Zhao found that the consideration of the rotatory inertia of
the beam increased the kinetic energy required to cause the same shear failure.

The dynamic plastic response and failure analysis of large thin plates with a centred
boss is of interest for safety design and protection in many civil and military applications.
A study of the static case was made by Markowitz and Hu (1964) to consider the loading
capacity of a simply supported and fully clamped orthotropic circular plate with a centred
rigid boss. The current work is concerned with the dynamic plastic failure of an infinitely
large thin plate with a centred boss; the plate is made of a rigid, perfectly plastic material,
which is assumed to obey the simplified yield criterion shown in Fig. 3 and its associated
flow rules. Two models are used in the present paper: rotatory inertia are disregarded in
the first one, but considered in the second. A comparison is made between the two cases.
This study can be used to assess the influence of rotatory inertia on the dynamic plastic
response and failure of structures.

2. MODEL WHEN ROTATORY INERTIA ARE DISREGARDED

A thin plate of sufficiently large outer edge, as shown in Fig. 1, is centred with a rigid
cylindrical boss. The initial velocity of the cylindrical boss is denoted as Yo. When the
rotatory inertia are disregarded, the plate is considered as bending around a fixed plastic
hinge circle at a distance Z from the interface between the plate and the boss. Sliding occurs
at the interface immediately when the cylindrical boss obtains the initial velocity. Let VG
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denote the sliding velocity of the boss at t > 0, which is greater than the adjacent plate
velocity V. The use of conservation of momentum on either side of the interface gives

rR + Z Z+R-r rt YH
GVo-GVG= JR 2nrm Z Vdr = Jo 2nR J3dt

which leads directly to

2nR YH
VG = VO- G J3t

I 2R YH
V=- -to

m Z(R +Z/3) J3

(1)

(2)

(3)

Application of the principle ofconservation of angular momentum on the system gives

rt YH r H 2y rt H 2y rR
+

Z (Z+R-r)2
Jo 2nR J3Zdt+ Jo 2n(R+Z)-4- dt + Jo 2nR-4-dt = JR 2nrm Z dr

I.e.

(4)

where H 2Y/4 and YH/J3 are the dynamic fully plastic bending moment per unit length
and the dynamic fully plastic transverse shear force per unit length, respectively. Equations
(3) and (4) can be combined to give a quadratic equation for the nondimensional stationary
plastic hinge circle position s as

where s = Z/R, a: = H/R.
The nondimensional hinge position s is then

s = J(8-J3a:)2 -16J3a:- (8- 5J3a:)

2(2-J3a:)

(5)

(6)

which shows that the nondimensional position of the plastic hinge circle s depends only on
the nondimensional parameter a:-the ratio of plate thickness to the radius ofthe cylindrical
boss.

The relative sliding velocity of the interface may be written in the form

where

[
2nR YH YJ[V) = Vo- - - +H(a:)- t,

G J3 m

H(a:) = 2J3a:(2-J3a:)
2

8 -J3a:-3a: 2
- (1-J3a:)J(8-J3a:)2 -16J3a:

(7)

Equation (7) shows that the sliding velocity at the interface decreases linearly with time
from its initial value Vo.
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z,w

Fig. 2. Elements of the circular plate.

The total relative sliding displacement between the boss and its adjacent plate can be
written as

(8)

where K o = GV~!2 is the initial kinetic energy of the cylindrical boss.
Failure is considered to have happened when

[h] ~ kH,

where k is a material constant to be determined by experiment. Complete severance occurs
at the interface when k = 1, but transverse shear failure is likely to develop for a smaller
value of k for beams (Jouri and Jones, 1988). The same situation is likely to occur for
plates; there has been no experimental investigation concerning the determination of
material constant k as far as we are aware. The value ofk may be larger for ductile materials,
and smaller for brittle materials. For convenience k = 1 is used here; for other values of k
it can be treated in the same manner. It is evident, therefore, that complete shear failure
occurs at the interface when

[h] ~H.

The initial kinetic energy required to cause such failure is given by

(
YH G )

K o~ 2nR }3 +H(tx);;; Y H.

For convenience, a nondimensional kinetic energy is introduced by

(9)

(10)

(11 )

(12)

Supposing that the mass of the boss per unit horizontal section is J1., the critical value
of the nondimensional kinetic energy ecr can then be written as

ecr = ~~ [~tx+H(tx);J.

It is evident from eqn (12) that the nondimensional critical kinetic energy depends on
two ratios. The first is the ratio of plate thickness to the radius of the cylindrical boss, and
the second is the ratio of the mass of plate per unit area to that of the boss per unit
horizontal section area.

3. MODEL WITH ROTATORY INERTIA

The equations of motion for the dynamic behaviour of the element of an axisym­
metrically loaded circular plate, as shown in Fig. 2, can be written in the form



Dynamic plastic shear failure analysis

Fig. 3. Simplified yield surface.

(rMr)' -Me = rQr-1rt/ir

(rQr)' = mrw,

1589

(13a)

(l3b)

where Ir = mHz/12, m is the mass per unit area of plate, WI = "'+1', '" is the rotation of
lines which were originally perpendicular to the initial mid-plane due to bending and

y=w'-"', "r="'I, "e=-!
r

(l3c)

are the transverse shear strain, radial curvature change and circumferential curvature
change, respectively.

The discontinuity conditions for the stationary plastic hinge may be written as (Jin,
1988)

[Mr] = [Qr] = [w] = [~] = [y] = 0, (14)

where [X] = Xz-X,.
The simplified yield criterion shown in Fig. 3, which was used by Jones and Gomes de

Oliveira (1980) to examine the dynamic plastic response of circular plate with transverse
shear and rotatory inertia, is adopted in this paper (see Fig. 4).

If rotatory inertia are considered the plate is divided into three different regions
according to the deformation profiles. These are now considered.

1. r E [R, R+Z]. There is a stationary plastic hinge circle at r = Z +R. The yield and
geometrical conditions in this region are

Me=Mo, -Qo~Qr~O, O~Mr~Mo

y = 0, Kr = "'I = 0,

(15a)

(15b)

respectively.
2. r E [R +Z, R+Z 1]' In this plastic region the yield and geometrical conditions are

R+Z

Fig. 4. Schematic illustration of the deformation profile with shear and rotatory inertia.
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Mo=Mo, M,=O, -Qo:(Q,:(O

y = 0,

(I6a)

(16b)

respectively.
3. r > R +Z l' This is a rigid stationary region.

3.1. re[R, R+Z]
Integrating (ISb) and substituting it into (l3c) yields

IV = C,r+C2

IV = C,r+C2•

Substituting (17b) into (l3b) gives

where the integration constant has been determined by

Q,=-Qo at r=R.

Equations (l3a) and (18) give

(l7a)

(l7b)

(18)

mC IrM, = rMo-rRQo+R2Qo+ 24 [2r4+6R4-8R3r-H2(r2_R2)]

mC2
+ -6-(r3-3R2r+2R 3

), (19)

where the integration constant has been determined by

M, = Moat r = R.

3.2. re [R+Z, R+Zd
Equation (l6b) predicts

,i: .. ,
'f' = w.

Substituting (20) and (l6a) into (l3a) yields

2 •• ,,+ ··r 12 2·· 0r w rw - H 2r w = .

Since IV = 0 for Z I --+ 00, the solution of (21) can be written in the form

where Ko(2fi(r/H» is the modified Bessel function of the second kind of order zero.
Integrating (22) with respect to time yields

(20)

(21)

(22)
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Since w= 0 for r -+ 00 and Ko(2j3(rjH» -+ 0 as r is sufficiently large, then

D(r) = o.

Equations (23), (20) and (13a) give

1591

(23a)

(23b)

mH. (r; r)
rQ, = -Mo- 2j3C3rK1 2...; 3 H '

where K\(2j3(rjH» is the modified Bessel function of the second kind of order one.

3.3. Determination of the undetermined constants
By the discontinuity conditions (14) we have

where Z' = Z+R.
Solving the above four equations gives

(24)

where

2 S,2+S' + I
fl(rx,s') = r;(2s'+I)-rx , I

...;3 s-

, 2 (,2 , rx 2) rx(S'2+ I) 2 ,2
f2(rx,s) = j3 3s +2s +1- 2 + 4(s' _1)2 [rx -6(s -I)]

f( ') - 13 3,2_3 '-I rx
2

s,2+2s'+3
rx, s - s + s s + 2 s' _ I .

(25a)

(25b)

(25c)

s' = Z'jR, Z' is measured from the central line of the cylindrical boss.
Omitting the lengthy details, we can obtain the nonlinear equation of s' as follows:
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where
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f ') 2( ,2 , 1J(2) J3 s'2+1 2 ,2
3(IJ(,S =a 3s +2s +1- 2 +4 (s'_1)2[1J( -6(s -1)].

(26)

Obviously, we know from eqn (26) that s', therefore s, is only dependent upon
IJ( = H/R-the ratio of the plate thickness to the radius of the boss. Equation (26) can be
solved numerically.

3.4. Shear failure analysis
Once the nondimensional hinge position s, as well as the integration constants are

determined, the velocity of the plate adjacent to the boss can be written in the form

(27)

where

(28)

and

Equation (2) still holds in this case, which means that the velocity of the boss decreases
linearly with time from its initial velocity VQ' The relative velocity between the boss and its
adjacent plate is given by

(29)

The total relative sliding displacement is therefore

(30)

where Ko = ~GV6 is the initial kinetic energy of the boss.
In the same manner as in Section 2, complete shear failure is considered to occur when

k = 1, i.e.

[h] ~ H (31 )
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Fig. 5. S-(X Curves.

(32)

In this case the nondimensional critical kinetic energy may be written in the form

(33)

where /l is the mass of the cylindrical boss per unit horizontal section area.
In a manner similar to Section 2, eqn (33) indicates that ecr depends on IX and the ratio

of the mass of the boss per unit horizontal section area to that of the plate per unit area of
mid-plane.

4. DISCUSSION

Equations (12) and (33) mean that the nondimensional kinetic energy required for
causing complete shear failure at the interface depends on two ratios. The first one is the
ratio of the thickness of the plate to the radius of the boss, and second is the ratio of the
mass of the boss per unit horizontal section area to that of the plate per unit area of mid­
plane. In order to assess the influence of rotatory inertia, we make a comparison between
the two cases in Figs 5 and 6. Figure 5 shows that the nondimensional hinge position s, in
the case when rotatory inertia is considered, is smaller than that when rotatory inertia are
disregarded under the same ratio IX (the thickness of the plate to the radius of the cylindrical
boss). In addition, Fig. 6 indicates that the nondimensional critical energy in the case when
rotatory inertia are considered is larger than that in the case when rotatory inertia are
disregarded under same IX and same /lIm. Figure 6 also shows that the difference in ec•

between the two cases increases with the increase of /lIm under the same IX, and the difference
increases with the increase of IX under the same /lIm.

The influence of IX on the nondimensional hinge position can be clearly seen in Fig. 5,
s increases monotonically with the increase of the ratio of the plate thickness to the radius
of the boss, the nondimensional kinetic energy ecr decreases monotonically with the increase
of the same ratio. Nevertheless, if IX is fixed at a particular value, increase of the value of
/lIm causes a concomitant increase of ecr •
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Fig. 6. The relationship between e" and C( with different p./m (k = I).

5. CONCLUSION

A theoretical solution has been presented for predicting the dynamic plastic response
and shear failure of a rigid, perfectly plastic infinitely large plate with a central cylindrical
boss under an initial impulsive velocity. The plate is assumed to obey the simplified criterion
and its associated flow rules. A comparison has been made to assess the importance of the
influence of rotatory inertia included in the governing equation on the dynamic plastic
shear failure of the structure. Two analytical models are used in the paper, the first is
without the influence of rotatory inertia, the second retains the influence of the rotatory
inertia of the plate as well as bending moments. It is shown that whether shear failure
occurs or not at the interface, where the initial velocity has discontinuity, depends on the
material constant k and two ratios. The first is the ratio of plate thickness to the radius of
the cylindrical boss, the second is the density ratio of the boss to the plate. Consideration
of the influence of rotatory inertia of the plate increases the initial kinetic energy of the boss
required to cause dynamic plastic shear failure. It is interesting to note that this property
coincides with that of the shear failure analysis of a cantilever with an attached mass block
at its tip, the consideration of the rotatory inertia of the beam increases the kinetic energy
required to cause the complete shear failure at the interface between the beam and the mass
block (Yu and Zhao, 1993).
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